Welcome Guest | RSS
Welcome to science club
Site search
Site menu
Indian Heritage
Social bookmarks
Home » 2014 » December » 12 » Tar pit clues provide ice age news
9:16 AM
Tar pit clues provide ice age news

Tar pit clues provide ice age news

drawing of La Brea Tar Pits animals

Scientists often trek to remote areas in search of important fossils. Some spend weeks digging in the deserts of Asia, combing the dry hills of the American West or surveying mountainsides in Alaska. Others have spent decades working with picks and shovels much closer to home — including in an inner-city park here.

Over the past century, scientists have dug up millions of fossils from the La Brea Tar Pits. The fossils come from ice age creatures big and small. They were trapped over many thousands of years in soil made gooey by crude oil that was seeping up from deep underground. This has made the urban site one of the world’s most famous sources of ice age fossils.

mammoths

They represent more than 600 species of animals and plants that lived roughly 12,000 to 45,000 years ago. The fossils include many big animals, such as mammoths, camels and saber-toothed cats. Some preserve what’s left of ants, wasps, beetles and other tinier organisms. Many fossilized species have gone extinct. Others, including certain insects, no longer live in Los Angeles — but still can be found nearby.

During the last ice age, kilometers-thick ice sheets smothered large parts of Canada and the northern United States. No ice sheets covered what is now Southern California. There were nearby glaciers, however, on mountains east of Los Angeles.

Generally, the region’s climate was much cooler and wetter — about what it’s like today 480 kilometers (300 miles) to the north. Throughout the tens of thousands of years that the ice age lasted, average temperatures varied from year to year, and from one decade to the next. Only as the ice age ended did temperatures warm up for good.  

Scientists can learn about the past climate by analyzing the clues contained in fossils of long-ago animals trapped in the tar pits. 

By studying differences in the same species through time, researchers also can see how a changing climate affected the animals. Along the way, scientists have turned up some surprises. For instance, some animals didn’t always evolve in ways that researchers had expected.

Tiny clues

Despite its name, there is no tar at the La Brea Tar Pits. The viscous goo bubbling to the surface is actually a thick form of crude oil known as bitumen. The tar pits formed as this bitumen has oozed out from deep underground. In cool weather, the oil is firm. There is no getting stuck in it. But as the weather warms, the oil softens and turns gooey. Then, it can trap even large creatures.

In the late 1800s, ranchers who lived west of downtown Los Angeles discovered some old bones in their fields. For many years, the ranchers thought the bones were from cattle or other farm animals that happened to get stuck in the oil seeping up to the surface there. But in 1901, William Warren Orcutt realized the farmers had been wrong. This geologist, who worked for a California oil company, recognized that the bones came from ancient creatures.

A little more than a decade later, researchers began excavating the fantastic fossils at Rancho La Brea (Spanish for The Tar Ranch).

At first, paleontologists — the scientists who study fossils — were interested only in the bones of large, unusual creatures. These included mammoths (related to today’s elephants) and saber-toothed cats (relatives of lions and tigers). While those long-lost creatures were certainly impressive, the bitumen had trapped many smaller creatures too, notes Anna Holden. As a paleoentomologist (PAY-lee-oh-en-tow-MOL-oh-gist), she studies ancient insects. She does this for the Natural History Museum of Los Angeles County, not far from the tar pits.

Often, the tiny creatures that paleontologists had long ignored can provide big clues about the ecosystem in which they had lived. For example, last year Holden studied the burrows that insects had tunneled into the bones of bison, horses and other animals that eat grass. The bone-chewing insects had fed on the animals after they had died. Trapped in the tar pits, their remains had not yet sunk into the sticky muck.

The insects take at least four months to develop into adults, Holden notes. They are active only during the warmest months. This suggests that even in the middle of the last ice age, roughly 30,000 years ago, there were periods when the climate was warm enough for bitumen to trap animals — and for the insects that feed on them to be active. It also suggests that the summers must have lasted at least four months during these warm intervals.

tar pit bubble

Now, Holden’s at it again. This time, she’s looking at the fossils of two pupae from leafcutter bees. (“Pupae” is the plural of pupa, the life stage just before insects become adults.)

Those bee fossils had been dug up from the tar pits in 1970. They had been mined from about 2 meters (6.5 feet) below ground. This level held the remains of animals, including bugs, that had lived between 23,000 and 40,000 years ago.

Unlike honeybees, leafcutter bees don’t create hives. They live a solitary life. Their nests are tunneled into plant stems, rotting wood or loose soil. A female will lay an egg inside a tiny capsule made from bits of leaf trimmed from a tree or shrub. This behavior accounts for why the bees are called “leafcutters.”

The La Brea bee pupae had fed on pollen and nectar. The female bee had deposited the meal before she laid an egg and sealed its capsule.

Each capsules is only about 10.5 millimeters (0.41 inch) long and 4.9 millimeters (0.19 inch) in diameter. That is a tad smaller than the band of metal that holds in place a pencil eraser. Holden and her team used a powerful X-ray machine to make 3-D scans of each pupa. Then a computer combined hundreds of these scans, each depicting a thin slice of tissue only about one-third the thickness of the finest human hair. The result is a detailed, 3-D image that the computer can depict from any angle. The computer also can peer inside this digital mass to see internal structures or layers.  

“At first, I didn’t think we had any chance to identify these bees,” says Holden. However, certain features of the pupae, as well as the distinctive shape of the tiny rolls of leaves in which they were bundled, helped Holden’s team identify the type of bee.

The pupae came from Megachile (Meh-guh-KY-lee) bees. Their fossil nest capsules are the first ever preserved from this genus, notes Holden. (A genus is a group of closely related species.) She and her co-workers described their findings in the April 2014 PLOS ONE.

bee fossils

It’s possible that rains washed the bee nests into a pool of bitumen, where the ooze later buried them, says Holden. However, that’s not likely. The fossils are so delicate, she explains, that flowing water likely would have ripped them apart. Instead, she thinks the bees must have dug their nests into soils at the tar pits. Later, seeping oil would have covered the nests, she suspects. Over time, soil and other material that washed or blew into the area would have buried the nests even deeper.

Megachile bees still live in California, just not around the tar pits. Holden suspects that’s largely because Los Angeles has become too warm and dry for them. Today, these bees live only in cooler, moister places. The mountains surrounding the Los Angeles basin host such conditions, starting at elevations of about 200 meters (660 feet) above sea level.

Because leafcutter bees tolerate only a very narrow environmental range, their fossils provide much more detailed data on local conditions than do the fossils of, say, wolves or camels. Those big guys withstood a much wider variety of conditions, including changes in temperature and precipitation.

In fact, Megachile fossils tell scientists that the area surrounding the tar pits at the time the pupae were buried would have been cooler and rainier than it is today. What’s more, streams or small rivers would have had to flow through the area back then, providing habitat for the plants that the bees used to create their leafy nests.

Evolution in action

The bitumen bubbling up at Rancho La Brea trapped creatures over a period of roughly 33,000 years. Even though that entire period lies within the last ice age, the climate varied a lot during that time.

And that means those species had plenty of time to evolve, adapting to the region’s changing conditions. To probe whether they actually did, scientists need to look at a large sample of fossils from creatures that had died over a broad range of time, explains Julie Meachen. She’s a vertebrate paleontologist at Des Moines University in Iowa.

Smilodon fatalis, or the saber-toothed cat, is one of the best candidates, she notes. These ice-age beasts (once incorrectly known as saber-toothed tigers) were about the size of modern lions and tigers, but heftier. Their strong forelimbs helped them grab and bring down prey. The creature’s most distinctive features were its 25-centimeter (10-inch) fangs. In the past century, researchers have dug up fossils at the La Brea Tar Pits from more than 2,000 of these iconic creatures.

In a new study, Meachen and two other researchers looked at 123 jawbones from these fearsome predators. They came from several different tar pit sites. The experts measured 14 different aspects of the skulls. For instance, they measured the locations of certain teeth and the thickness of the jawbone. They also measured the angle at which the jawbone attached to the skull. That angle helped the scientists estimate the strength of each creature’s bite.

To calculate a fossil’s age, researchers typically measure how much carbon-14 it contains. Carbon-14 is a different form, or isotope, of the element. Isotopes vary somewhat in weight. Many isotopes are stable, while some, including carbon-14, undergo radioactive decay. That rate of decay is constant. For example, every 5,730 years, one half of all carbon-14 disappears from a sample of organic material — such as wood, bone or anything else that once was part of a living plant or animal. Measuring how much carbon-14 is “missing” allows scientists to compute its approximate age. This is called “carbon dating.”

That dating suggests the big cats that left these fossils — along with any others unearthed from the same site — were trapped during several different intervals. These ranged from roughly 13,000 to 40,000 years ago.

Other studies had shown that jawbone length in meat-eating mammals is related to overall body size, says Meachen. Her team’s new jawbone analysis reveals that the saber-toothed cats were changing in size throughout the 27,000-year span. Moreover, she notes, “It appears that they were changing with the climate.”

For example, twice during that period — about 36,000 years ago and again about 26,000 years ago — the climate was relatively cool. At those times, the cats were relatively small, Meachen reports. But in between — some 28,000 years ago — the climate warmed. At this point, the cats became relatively big. The scientists describe their findings in the April Journal of Evolutionary Biology.

This trend doesn’t match what researchers had come to expect, Meachen notes. In biology, there’s a general rule about the body size of animals. It’s called Bergmann’s Rule. (It is named after the German scientist who studied living animals and came up with this rule in the 1840s.) This rule holds that creatures in colder regions are typically larger than closely related species living in warmer areas.

saber tooth cat

From cats to the ‘dogs’

Another recent study of tar pit fossils came up with similar results. This analysis was very similar to Meachen’s analysis of saber-toothed cats. But here, scientists focused on dire wolves (Canis dirus). These extinct creatures were about the size of gray wolves today. But like the saber-toothed cats, these wolves were heftier than their modern kin.

Researchers have unearthed fossils of more than 4,000 dire wolves at Rancho La Brea.

In the new study, Robin O’Keefe and his co-workers analyzed 73 dire wolf skulls. O’Keefe is a paleontologist at Marshall University in Huntington, W. Va. On each skull, the team mapped the location of 27 biological “landmarks.” These included teeth, eye sockets and where the jaw muscles had attached to the bone. As with the cats, the overall shape of the dire wolves’ skulls changed through time, he reports.

 

wolf skull representations

Analyses of the shape and size of the lower jawbones from saber-toothed cats unearthed at Rancho La Brea reveal that the creatures evolved as the climate changed throughout the last ice age. Numbers denote skull “landmarks.”

 

Dire wolves were smaller at the peak of the last ice age, when the region’s climate was at its coldest. Again, that doesn’t match the trend expected from Bergmann’s Rule, O’Keefe notes. His team reported its findings in the January-April Palaeontologia Electronica.                        

“When the climate was warm, it really stressed the ecosystem,” O’Keefe explains. As a result, the wolves’ growth often was stunted. They typically had shorter snouts and many more broken teeth than did wolves living during cooler times. Hard times may have forced them to crack open large bones as the wolves hunted for scarce nutrients, O’Keefe suspects. And that would have boosted the risk of fracturing teeth.

Like Meachen and her work on saber-toothed cats, O’Keefe thinks that how much food was around had a big effect on the size of a dire wolf's body.

To verify that, researchers could dig deeper into the fossil record, says O’Keefe. For example, he explains, scientists could measure the ratio of nitrogen-14 to nitrogen-15 in the fossils. If the proportion of nitrogen-15 is unusually high, it could be a sign that the predators were at the top of a food chain that included many levels of creatures. Over time, variations in that ratio of nitrogen isotopes can point to changes, and not just in the eating habits of a species.

"These things could tell us how the ecosystems were changing," says O'Keefe. "We really should be bending over backward to see what that fossil record can tell us."

Power words

bitumen   A natural type of especially heavy, dense petroleum. This type of heavy crude must be diluted before it can flow through pipelines.

carbon-14  A carbon atom that has 6 protons and 8 neutrons in its nucleus. This isotope of carbon is radioactive, and researchers often measure its concentration to help estimate the age of organic materials such as wood, leather or bone. One half of any collection of carbon-14 atoms will change into nitrogen-14 over the course of around 5,730 years.

climate   The weather conditions prevailing in an area in general or over a long period.

crude oil  Petroleum in the form that it comes out of the ground.

dire wolf    An extinct species (Canis dirus) that first showed up in North America about 300,000 years ago. It survived until about 12,000 years ago. Fossils show it would have weighed up to 67 kilograms (148 pounds) sported a body that would have stretched up to 1.8 meters (6 feet) from snout to tail tip. It ate a varied diet that could have included big prey, including horses and camels.

entomology     The scientific study of insects. One who does this is an entomologist. A paleoentomologist studies ancient insects, mainly through their fossils.

extinct  An adjective that describes a species for which there are no living members.

fossil   Any preserved remains or traces of ancient life. There are many different types of fossils: The bones and other body parts of dinosaurs are called “body fossils.” Things like footprints are called “trace fossils.” Even specimens of dinosaur poop are fossils.

genus    A group of closely related species. For example, the genus Canis — which is Latin for “dog” — includes all domestic breeds of dog and their closest wild relatives, including wolves, coyotes, jackals and dingoes.

half-life The amount of time needed for one half of a collection of a certain radioactive isotope to decay into other types of atoms. For instance, it takes about 5,730 years for one-half of a collection of carbon-14 atoms to transform into other isotopes.

ice age    Earth has experienced at least five major ice ages, which are prolonged periods of unusually cold weather experienced by much of the planet. During that time, which can last hundreds to thousands of years, glaciers and ice sheets expand in size and depth. The most recent ice age peaked 21,500 years ago, but continued until about 13,000 years ago.

isotopes  Different forms of an element that vary somewhat in weight (and potentially in lifetime). All have the same number of protons but different numbers neutrons in their nucleus. As a result, they also differ in mass.

nectar    A sugary fluid secreted by plants, especially within flowers. It encourages pollination by insects and other animals. It is collected by bees to make into honey.

paleoentomologist    A scientist who specializes in studying the fossil remains of ancient insects.

paleontologist    A scientist who specializes in studying fossils, the remains of ancient organisms.

paleontology    The branch of science concerned with ancient, fossilized animals and plants.

pollen    Powdery grains released by the male parts of flowers that can fertilize the female tissue in other flowers. Pollinating insects, such as bees, often pick up pollen that will later be eaten.

predator  (adjective: predatory) A creature that preys on other animals for most or all of its food.

pupa     (plural: pupae)  The life stage in insects following the larval stage and preceding adulthood. (For butterflies and moths, the larval stage is a caterpillar.)

radioactive decay  A process by which an element is converted into a lighter element through the shedding of subatomic particles (and energy).

radiocarbon dating  A process to determine the age of material from a once-living object. It is based on comparing the relative proportion, or share, of the carbon-12 to carbon-14. This ratio changes as radioactive carbon-14 decays and is not replaced.

saber-toothed cat     Once popularly referred to the saber-toothed tiger, this cat (Smilodon fatalis) is not closely related to tigers at all. Adults of this bobtailed species were about 30.5 centimeters (roughly one foot) shorter than today’s lions but would have weighed twice as much. Unlike lions and the other big cats of Africa, the saber-toothed cat probably did not chase down its prey, but instead ambushed them from a hiding place. The species died out roughly 10,000 years ago.

species    A group of similar organisms capable of producing offspring that can survive and reproduce.

Views: 1050 | Added by: scienceclub | Rating: 5.0/1
Total comments: 0
avatar
Live feeds update
Country
Flag Counter
Visitors
www.scienceclub.ucoz.com
scienceclub.ucoz.com
This Website Visits
Site news
Calendar
«  December 2014  »
SuMoTuWeThFrSa
 123456
78910111213
14151617181920
21222324252627
28293031
Google +